Normal pressure hydrocephalus

Normal pressure hydrocephalus
Classification and external resources
ICD-10 G91.2
ICD-9 331.9, 331.5
DiseasesDB 9089
MedlinePlus 000752
eMedicine neuro/277 radio/479
MeSH D006850

Normal pressure hydrocephalus (NPH), also termed symptomatic hydrocephalus, occurs when there is an increase in intracranial pressure (ICP) due to an abnormal accumulation of cerebrospinal fluid (CSF) in the ventricles of the brain, which can cause ventriculomegaly. The ICP gradually falls but still maintains a slightly elevated level and the CSF pressure reaches a high normal level of 150 to 200 mmH2O. Measurements of ICP, therefore, are not usually elevated. Because of this equilibration, patients do not exhibit the classic signs that accompany increased intracranial pressure such as headache, nausea, vomiting, or altered consciousness. (Though some studies have shown pressure elevations to occur only intermittently). However, the enlarged ventricles put increased pressure on the adjacent cortical tissue and cause myriad effects in the patient. The classic triad of gait disturbance, urinary incontinence, and dementia or mental decline, was first described by Hakim and Adams in 1965.[1] NPH is often misdiagnosed as Parkinson's disease, Alzheimer's disease, or dementia, due to its chronic nature and nonspecific presenting symptoms [see below]. Although the exact mechanism is unknown, normal-pressure hydrocephalus is thought to be a form of communicating hydrocephalus with impaired CSF reabsorption at the arachnoid granulations.

There are 2 types of normal pressure hydrocephalus: idiopathic and secondary. The term idiopathic means that it has no known cause. The secondary type of NPH can be due to a subarachnoid haemorrhage, head trauma, tumour, CNS infection, or a complication of cranial surgery.[2]

Recent population-based studies have estimated the prevalence of NPH to be about 0.5% in those over 65 years old, with an incidence of about 5.5 patients per 100,000 of people per year.[3][4] This is in accordance with comparable findings stating that although normal pressure hydrocephalus can occur in both men and women of any age, it is found more often in the elderly population, with a peak onset generally in the sixth to seventh decades.[5]

Patients with dementia that are confined to a nursing home and may have undiagnosed NPH, can possibly become independent again once treated. So far only one study was able to evaluate the prevalence of NPH, both diagnosed and undiagnosed, among residents of assisted-living facilities, showing a prevalence in 9 to 14% of the residents.[6]

Contents

Clinical manifestations

NPH may exhibit a classic triad of clinical findings (known as the Adams triad or Hakim's triad) of urinary incontinence, gait disturbance, and dementia (commonly referred to as "wet, wobbly and wacky" or "weird walking water").

Diagnosis

Diagnosis of NPH is usually first led by a lumbar puncture, followed by the evaluation of clinical response to removal of CSF. This can be followed by a CT, MRI, and continuous external lumbar CSF drainage during 3 or 4 days.

Treatment

NPH may be relieved by surgically implanting a ventriculoperitoneal shunt to drain excess cerebrospinal fluid to the abdomen where it is absorbed. Once the shunt is in place, the ventricles usually diminish in size in 3 to 4 days, regardless of the duration of the hydrocephalus. Even though the ventricular swelling diminishes, only 21% of patients show a marked improvement in symptoms. The most likely patients to show improvement are those that show only gait disturbance, mild or no incontinence, and mild dementia.[11] A more recent study (2004) found better outcomes, concluding that if patients with idiopathic normal pressure hydrocephalus are correctly identified, shunt insertion yielded beneficial outcomes in 86% of patients, in either gait disturbance (81%), improved continence (70%), or both. They also observed that measurements in the diagnostic clinical triad, the cortical sulci size, and periventricular lucencies were related to outcome. However, other factors such as age of the patient, symptom duration, dilation of ventricles, and the degree of presurgical dementia were unrelated to outcome.[12]

Shunts in Developing Countries

Since the cost of shunt systems, including the high cost of revisions, is beyond the reach of common people in developing countries, most of them die without ever receiving a shunt. Looking at this point, a study done by Dr. Benjamin C. Warf comparing different shunt systems and highlighting the role of a low cost shunt system in most of the developing countries. This study has been published in the Journal of Neurosurgery: Pediatrics May 2005 issue. It is about comparing the Chhabra shunt system from Surgiwear to those of the shunt systems from developed countries. The study was done in Uganda and the shunts were donated by International Federation for Spina Bifida and Hydrocephalus.

References

  1. ^ Adams, R.D., Fisher, C.M., Haskim, S. et al. (1965). Symptomatic occult hydrocephalus with "normal" cerebrospinal fluid pressure. A treatable syndrome. New England Journal of Medicine, 273, 117-126.
  2. ^ National Institute of Neurological Disorders and Stroke. (2011, April 29). NINDS Normal Pressure Hydrocephalus Information Page. Retrieved from http://www.ninds.nih.gov/disorders/normal_pressure_hydrocephalus/normal_pressure_hydrocephalus.htm
  3. ^ Brean A, Eide PK. Prevalence of probable idiopathic normal pressure hydrocephalus in a Norwegian population. Acta Neurologica Scandinavica 2008
  4. ^ Tanaka N, Yamaguchi S, Ishikawa H, Ishii H, Meguro K. Prevalence of Possible Idiopathic Normal-Pressure Hydrocephalus in Japan: The Osaki-Tajiri Project. Neuroepidemiology 2009; 32: 171
  5. ^ a b c d Younger, D.S. (2005). Adult Normal Pressure Hydrocephalus. In Younger, D.S. (Ed.), Motor Disorders (2nd edition) (pp. 581-584). Philadelphia, PA: Lippincott Williams & Wilkins.
  6. ^ Marmarou A, Young HF, Aygok GA. Estimated incidence of normal-pressure hydrocephalus and shunt outcome in patients residing in assisted-living and extended-care facilities. And which demographic gets this most? Neurosurgical Focus 2007; 22: 1-8
  7. ^ Krauss, J.K., Faist, M., Schubert, M., Borremans, J.J., Lucking, C.H., & Berger, W. (2001). Evaluation of Gait in Normal Pressure Hydrocephalus Before and After Shunting. In R’uzicka, E., Hallett, M., & Jankovic, J. (Eds.), Gait Disorders (pp.301-309). Philadelphia, PA: Lippincott Williams & Wilkins.
  8. ^ a b Ropper, A.H. & Samuels, M.A. (2009). Adams and Victor’s Principles of Neurology (9th edition). New York, NY: McGraw-Hill Medical.
  9. ^ The value of supplemental prognostic tests for the preoperative assessment of idiopathic normal-pressure hydrocephalus.Marmarou A, Bergsneider M, Klinge P, Relkin N, Black PM.Neurosurgery. 2005 Sep;57(3 Suppl):S17-28
  10. ^ Ongoing search for diagnostic biomarkers in idiopathic normal pressure hydrocephalus. Andrew Tarnaris, Ahmed K Toma, Neil D Kitchen, Laurence D Watkins. Biomarkers in Medicine, December 2009, Vol. 3, No. 6, Pages 787-805
  11. ^ Shunting normal-pressure hydrocephalus: do the benefits outweigh the risks? A multicenter study and literature review.[1]
  12. ^ Poca MA, Mataró M, Del Mar Matarín M, Arikan F, Junqué C, Sahuquillo J. Is the placement of shunts in patients with idiopathic normal-pressure hydrocephalus worth the risk? Results of a study based on continuous monitoring of intracranial pressure. J Neurosurg. 2004 May;100(5):855-66. PMID 15137605

External links